翻訳と辞書
Words near each other
・ Poseongbong
・ Poser
・ Poser criteria
・ Poser, British Columbia
・ Poseritz
・ Poserna
・ Posers (film)
・ Posert Castle
・ Poserverse
・ Poses
・ Poses (album)
・ Poses, Eure
・ Posesi Bloomfield
・ Posesión Airport
・ Poset game
Poset topology
・ Posetal category
・ Posets
・ Poseur
・ Poseur Ink
・ Posey
・ Posey (surname)
・ Posey and Webster Street tubes
・ Posey County, Indiana
・ Posey Creek Station
・ Posey Field
・ Posey Field, Alabama
・ Posey G. Lester
・ Posey Island State Park
・ Posey Range


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Poset topology : ウィキペディア英語版
Poset topology
In mathematics, the poset topology associated with a partially ordered set ''S'' (or poset for short) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of S, ordered by inclusion.
Let V be a set of vertices. An abstract simplicial complex Δ is a set of finite sets of vertices, known as faces \sigma \subseteq V, such that
::\forall \rho, \sigma. \;\ \rho \subseteq \sigma \in \Delta \Rightarrow \rho \in \Delta
Given a simplicial complex Δ as above, we define a (point set) topology on Δ by letting a subset \Gamma \subseteq \Delta be closed if and only if Γ is a simplicial complex:
::\forall \rho, \sigma. \;\ \rho \subseteq \sigma \in \Gamma \Rightarrow \rho \in \Gamma
This is the Alexandrov topology on the poset of faces of Δ.
The order complex associated with a poset, S, has the underlying set of S as vertices, and the finite chains (i.e. finite totally ordered subsets) of S as faces. The poset topology associated with a poset S is the Alexandrov topology on the order complex associated with S.
==See also==

* Topological combinatorics

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Poset topology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.